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ABSTRACT  
 
With their potential for transforming surface transportation, understanding the impacts 
and benefits of automated vehicles (AVs) with regards to safety, mobility, energy and the 
environment is a necessary first step for informing policy to aid the successful 
introduction of AVs into an already complex transportation system.  As part of a larger 
work to develop a framework for assessing impacts of AVs in several different areas of 
interest, this paper serves as an early implementation proof-of-concept for a methodology 
to integrate microsimulation runs with MOVES analysis to calculate emissions and fuel 
consumption for AVs.  Four scenarios for a single-lane, 2-mile-long roadway are 
modeled in a microsimulation model: at-capacity with only human drivers, at-capacity 
with only automated vehicles, over capacity with only human drivers, over capacity with 
only automated vehicles.  In this study, automated vehicles are only modeled very 
simply, by removing oscillation in following distance behind other vehicles.  The 
trajectory data is used to calculate and assign operating modes for the vehicles along the 
roadway.  Using MOVES 2014a, this operating mode distribution is used to calculate fuel 
consumption and emissions for certain pollutants and results are discussed and compared.  
It was found that automated vehicles oscillate less around a primary operating mode and 
also, overall, produce less emissions and consume less fuel than a roadway with only 
human drivers.  This study indicates that a proper assessment of emissions and fuel 
consumption can be calculated from output from a microsimulation model.  Later work 
will investigate a variety of other scenarios that simulate anticipated automated vehicle 
behavior and vehicle operations.   

INTRODUCTION 
 
Automated vehicles (AVs) have the potential to bring about transformative safety, 
mobility, energy, and environmental benefits in the surface transportation system. These 
benefits could include crash avoidance, reduced energy consumption and vehicle 
emissions, reduced travel times, improved travel time reliability and multimodal 
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connections, improved transportation system efficiency and improved accessibility, 
particularly for persons with disabilities and the growing aging population [1].  
 
AVs are being introduced into a complex transportation system. Second-order impacts, 
such as the possibility of increased vehicle-miles traveled (VMT), are of significant 
concern. Given the complexity of the impacts, a modeling framework is needed to ensure 
that they are adequately captured. The USDOT Volpe National Transportation Systems 
Center is developing such a framework for assessing the benefits of automated vehicles. 
This framework includes estimating the potential safety, mobility, energy and 
environmental benefits (as well as potential dis-benefits) of technologies associated with 
automated vehicles as they are introduced into the national transportation system [2].   
 
The framework’s scope and complexity are exhibited in the figure below.  

 
Figure 1: Automated Vehicle Impacts Framework 

Environmental impacts are highly dependent on other factors within the framework.  
Changes in vehicle speeds, vehicle miles traveled, reduced idling times from congestion, 
as well as changes in car following distances and improved aerodynamic characteristics 
will alter fuel consumption and emissions.  As a result, it is critical to understand and 
implement an appropriate methodology for determining environmental impacts given 
anticipated automated vehicle impacts that are assessed in other parts of the framework.  
This paper stands as a proof-of-concept for early implementation of a methodology in 
which automated vehicle operations are modeled in a microsimulation model and 
appropriate MOVES runs set-up and analyzed to calculate appropriate emissions and fuel 
consumption impacts.      
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BACKGROUND 
 
A number of studies have linked microsimulation modeling to microscopic fuel 
consumption and emissions models in order to estimate environmental impacts analysis 
[2], [3], [4], [5], [6] [7] [8], [9] and Chamberlain (2012)1.  We are using a similar 
methodology, utilizing a second-by-second drive schedule output characterizing driving 
behavior from the microsimulation model as a key input into MOVES2014a to obtain 
fuel consumption and emissions.  MOVES2014a was chosen because of its availability as 
a regulatory tool as well as its robust, yet simple to learn methodology.   
 
MOVES2014a operates by calculating emission rates based on a variety of inputs, 
including vehicle type, age, fuel, speed, acceleration, vehicle miles traveled, idling times, 
number of cold starts, soak times as well as meteorological data and road-link 
characteristics.  For running emissions, rates are estimated through assignment into 
operating modes.  For light-duty vehicles, a key indicator of operating mode assignment 
is through the calculation of the vehicle specific power (VSP), or tractive power exerted 
by the vehicle normalized by the vehicle’s weight.  Given a second-by-second drive 
schedule, VSP can be calculated using the following equation; 

𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡 =  
𝐴𝐴𝐴𝐴𝑡𝑡 +𝐵𝐵𝐵𝐵𝑡𝑡2 + 𝐶𝐶𝐶𝐶𝑡𝑡3 +𝑚𝑚𝑚𝑚𝑡𝑡𝑎𝑎𝑡𝑡

𝑚𝑚  
In which,  
A = tire rolling resistance term (KW sec/m) 
B = rotational resistance term (KW sec/m2) 
C = aerodynamic drag term (KW sec/m3) 
vt = velocity at time, t (m/s) 
at = acceleration at time, t (m/s2) 
m = mass (kg) 
 

Once the VSPt is calculated, an operating mode can be assigned. These are defined bins 
for operating speed and acceleration.  Operating modes are shown in the Table 1: 

                                              
1 Chamberlain, Choices to Make When Conducting a Hot-Spot Analysis Using MOVES, Transportation 
Research Board ADC20 Workshop for Hotspot Analysis 2/11/2012.  
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Table 1: Description of assignment of operating mode for MOVES analysis 

Operating Mode Operation Mode 
Description 

Vehicle-Specific Power 
(VSPt, kW/metric ton) 

Vehicle 
Speed (vt, 

mph) 

Vehicle Acceleration 
(at, mph/sec) 

0 Deceleration/Braking     at ≤ -2.0 OR                    
( at < -1.0 AND             
at-1 < -1.0 AND                         

at-2 < -1.0 ) 
1 Idle   -1.0 ≤ vt < 1.0   

11 Coast VSPt < 0 1 ≤ vt < 25   
12 Cruise/Acceleration 0 ≤ VSPt < 3 1 ≤ vt < 25   
13 Cruise/Acceleration 3 ≤ VSPt < 6 1 ≤ vt < 25   
14 Cruise/Acceleration 6 ≤ VSPt < 9 1 ≤ vt < 25   
15 Cruise/Acceleration 9 ≤ VSPt < 12 1 ≤ vt < 25   
16 Cruise/Acceleration 12 ≤ VSPt  1 ≤ vt < 25   
21 Coast VSPt < 0 25 ≤ vt < 50   
22 Cruise/Acceleration 0 ≤ VSPt < 3 25 ≤ vt < 50   
23 Cruise/Acceleration 3 ≤ VSPt < 6 25 ≤ vt < 50   
24 Cruise/Acceleration 6 ≤ VSPt < 9 25 ≤ vt < 50   
25 Cruise/Acceleration 9 ≤ VSPt < 12 25 ≤ vt < 50   
27 Cruise/Acceleration 12 ≤ VSPt < 18 25 ≤ vt < 50   
28 Cruise/Acceleration 18 ≤ VSPt < 24 25 ≤ vt < 50   
29 Cruise/Acceleration 24 ≤ VSPt < 30 25 ≤ vt < 50   
30 Cruise/Acceleration 30 ≤ VSPt  25 ≤ vt < 50   
33 Cruise/Acceleration  VSPt < 6 50 ≤ vt   
35 Cruise/Acceleration 6 ≤ VSPt < 12 50 ≤ vt   
37 Cruise/Acceleration 12 ≤ VSPt < 18 50 ≤ vt    
38 Cruise/Acceleration 18 ≤ VSPt < 24 50 ≤ vt   
39 Cruise/Acceleration 24 ≤ VSPt < 30 50 ≤ vt   
40 Cruise/Acceleration 30 ≤ VSPt  50 ≤ vt   

 
In order to run MOVES, vehicle type, meteorology, fuel specifications, and road network 
data which consists of link length, link grade, traffic volume and composition and link 
speed, must be input (Alam, Ghafghazi, & Hatzopoulou, 2014).  Link speed can be 
supplied through three methods: average speed distribution, second-by-second link drive 
schedules or operating mode distributions.  In this study, we are utilizing operating mode 
distributions input by externally calculating VSP and assigning op mode using Matlab.  
Studies have shown that when users input either operating mode distribution or second-
by-second driving schedules, MOVES gives better estimates of emissions [2], [10], [4].  
Emission rates are estimated given the vehicle characteristics as well as road and 
meteorological conditions.   
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DESCRIPTION OF THE APPROACH 
 
To assess the environmental impacts of automated vehicle operations, automated and 
non-automated vehicles are modeled using the VISSIM microsimulation model.  For this 
study, the work has focused on 0% automated vehicle penetration and 100% automated 
vehicle penetration on a single-lane roadway link.  Automated vehicle driving behavior 
differs from non-automated (“human”) driving behavior in that the Weidman 99 
oscillation parameters (CC2, CC4, CC5, CC6, and CC7) have been set to zero, with all 
other car following parameters and vehicle inputs held equal (desired headway, desired 
speed, etc.).  This alteration indicates that automated vehicles will follow other vehicles 
with a constant following distance without the oscillations commonly found in human 
driving.  (Note: this one alteration is not intended to represent all vehicle operations and 
driving behavior of AVs but rather to stand as a first examination of their anticipated 
behavior.)  In the VISSIM model runs, a one-lane roadway link, two miles long, is run 
through a 4,500-second simulation run, performing calculations and collecting data at a 
10 Hz rate.  To allow the traffic to reach equilibrium, data is only collected from 900-
4,500 second (one hour).  Four scenarios are modeled: 1,500 vehicles/hr and 3,000 
vehicles/hr each for 100% human drivers and 100% automated driving.  The relatively 
low and high volumes were chosen to depict the roadway operating near capacity and 
also over capacity.  For each scenario, fifteen simulation runs are performed, reporting 
throughput and average speed for each run.  The run with the median average speed of 
the fifteen simulations is chosen for environmental MOVES analysis.   
 
The four scenarios, with resulting throughput and average speed, are shown in the table 
below:  
 
Table 2: Scenarios Modeled in VISSIM Microsimulation Runs 

Scenario Drivers Hourly Volume 
(vehicles/hour) 

Average Speed 
(miles/hour) 

At-capacity HUMANS 1500 61.7 
AUTOMATED VEHICLES 1500 61.94 

Over-capacity  HUMANS 2468 56.16 
AUTOMATED VEHICLES 2599 56.2 

 
The following data are output from the VISSIM model into an output traffic trajectory 
parameters .fzp file: time, vehicle number, position, velocity, acceleration, time in 
network, and vehicle type..  These files are then imported and a program is run in 
MATLAB to average the microsimulation 10 Hz output over each second (for ease of use 
in MOVES which performs emissions calculations on the 1 Hz scale). Next, the data are 
analyzed to assign operating modes for each vehicle each second in the network to obtain 
an overall operating mode distribution for each vehicle type.  MOVES runs are set up at 
the project level to obtain emissions and fuel consumption for the modeled network.   
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MOVES 2014a SET-UP 
 
The following table shows the inputs used to set up the runs in MOVES 2014a to 
calculate emissions and fuel consumption.   
 
Table 3: MOVES 2014a Input 

Category Variable Input 
Description  --- <blank> 

Scale 

Model Onroad 
Domain/Scale Project 
Calculation Type Inventory 
Years 2020 
Months January 
Days Weekdays 
Hours 00:00 – 00:59 

Geographic Bounds 

Region Custom Domain 
StateID 99 
County ID 1 
GPA Fraction 0.0 
Bar. Pressure 28.94 
Vapor Adjust 0.0 
Spill Adjust 0.0 

Vehicles/Equipment 
Fuels Diesel, Electricity,              

Ethanol (E-85), Gasoline 
Source Use Type Passenger Car 

Road Type Selected Road Type Rural Restricted Access 

Pollutants and Processes 
(selected)  

Total Gaseous Hydrocarbons 

Running Exhaust and Crankcase 
Running Exhaust 

Non-methane Hydrocarbons 
Volatile Organic Compounds 
Carbon Monoxide (CO) 
Oxides of Nitrogen (NOx) 
Primary Exhaust PM2.5 – Total 
Primary PM2.5 – Brakewear 
Particulate Brakewear 

Primary PM2.5 – Tirewear 
Particulate Tirewear 

Manage Input Data Series --- <blank> 
Strategies Rate of Progress <blank> 

General Output 
Units Mass: grams, Energy: Million 

BTU, Distance: miles 
Activity Distance Traveled, Source Hours 

Output Emission Detail On and Off Road <None selected> 
 For all Vehicle/Equipment Categories Fuel Type 
Advanced Performance 
Features 

--- <blank> 
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Project Data Manager 
 
Within the project data manager, data input for the project-level was as described below.  
Many of the data used in the project-level run were obtained by running a national-scale 
inventory run for national rates and values.   
 
Table 4: Project Data Sources 

Data Source 

Age Distribution MOVES2014a Default Age Distribution Tool for 2020 
AVFT National-scale inventory run 
Fuel Formulation  National-scale inventory run 
Fuel Supply National-scale inventory run 
Fuel Usage Fraction National-scale inventory run 
Generic --- 
Hotelling --- 
I/M Programs No I/M programs 
Links VISSIM microsimulation model setup and output 
Link Source Type Source type: 21, Source type hour fraction: 1 
Meteorological Data National-scale inventory run 
Off-Network --- 
Operating Mode Distribution MATLAB output from VISSIM output 
Retrofit Data --- 
Tools --- 
Zone  all allocation factors set to: 1 
Zone Road Type Road Type: 2, Source hours factor set to: 1 

RESULTS AND DISCUSSION  
 

The operating mode distributions calculated from the VISSIM simulation output are 
shown in Figure 2 and 3 below.  These figures show a few things of interest in the 
differences in vehicle operations between human and automated drivers as modeled.   

• First, the primary operating mode for all of the scenarios is operating mode 33, 
which indicates that the vehicle is cruising or accelerating slightly at a speed 
greater than 50 mph.   

• The human drivers oscillate between op modes 33 and 35, indicating some 
stronger acceleration than the automated vehicles.   

• More operating modes are observed for the over-capacity roadway (Figure 3) than 
the roadway operating at-capacity (Figure 2).  This indicates, as one would 
expect, that the presence of more vehicles disrupts steady traffic flow, requiring 
more acceleration and deceleration to avoid colliding with other vehicles.  Also, 
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there is an observed increase in idling in over-capacity conditions compared to the 
at-capacity conditions.   
 

From these operating mode figures, it can be expected that the emissions from operating 
mode 33 will dominate total emissions, especially in the automated vehicle case, and that 
the presence of lower operating modes in the over-capacity case will increase emissions 
produced, particularly the emissions from idling.   
 

 
 

Figure 2: Operating Mode Distribution for At-Capacity Roadway (1500 
vehicles/hour) 
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Figure 3: Operating Mode Distribution for Over Capacity Roadway (3000 
vehicles/hour) 

The MOVES 2014a results for criteria pollutants carbon monoxide (CO), nitrogen oxides 
(NOx), volatile organic compounds (VOCs), and particulate matter less than 2.5 μm 
(PM2.5) for all four scenarios are shown in Figure 4.  NOx, VOCs and PM2.5 are also 
shown in the inset graph to give a better depiction of the emissions produced.   
 

 
 

For NOx, VOCs, and total PM2.5, automated vehicles perform the same or better 
(produce less emissions) than human drivers.  The greatest benefit of automated vehicles 
is in NOx, with a 32% and a 17% improvement over the human driver simulation for the 
at-capacity and over-capacity conditions, respectively.   
 
However, for the largest-producing pollutant, carbon monoxide, the human driver 
simulation at-capacity outperforms the automated vehicles significantly (only producing 
1.8 kg of CO compared to 4.4 kg for the automated vehicles).  This can be expected 
because the modeled human-driven vehicles operate at higher operating modes than the 
automated vehicles, and carbon monoxide emissions have an inverted relationship to 
speed.    
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Because carbon monoxide contributes the most to overall emissions, for the at-capacity 
scenario, human drivers produce only half as much total emissions as automated vehicles.  
(For the over-capacity scenario automated vehicles produce about 7% fewer emissions 
overall than the human drivers.)  These results show that automated vehicles can produce 
a dis-benefit under certain conditions, thus validating the importance of developing a 
robust framework that can fully assess benefits and dis-benefits.   
 
Total fuel consumption for the four modeled scenarios is given below:  
 

 
Figure 5: Total fuel consumption for four scenarios 

 
For both roadway conditions, the automated vehicles consume less energy than the 
human drivers, with 43% and 20% less fuel consumed in the at-capacity and over-
capacity conditions, respectively.  Combined with the emissions data, this indicates that 
there can be a trade-off in assessing benefits from automated vehicles since the scenario 
with the largest decrease in fuel consumption showed the largest dis-benefit in emissions.   
 

SUMMARY 
 
Overall, these results show that emissions and fuel consumption can be calculated and 
assessed from traffic micro-simulation model output.  This study does not pretend to 
properly assess the benefits or dis-benefits of automated vehicles but rather to prove that 
such an analysis can be conducted.  This study further indicates the necessity of creating 
a proper framework and methodology for assessing the impacts of automated vehicles 
arising from the complexity of the changes in vehicle operations and driving behavior 
that AVs introduce into an already complex transportation system.  Later work will 
investigate a variety of other scenarios that simulate anticipated automated vehicle 
behavior and vehicle operations.  
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DISCLAIMER 
 
The content provided is the work of the author and does not reflect the policy, guidance, or 
procedures adopted or recommended by the U.S. Department of Transportation. This 
document is disseminated in the interest of information exchange and the U.S. Government 
assumes no liability for use of the information. This paper does not constitute a standard, 
specification or regulation. 
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